ÇѾç´ëÇб³ ¼öÇаú

  • HOME
  • Ä¿¹Â´ÏƼ
  • ¼¼¹Ì³ªÀÏÁ¤
¼¼¹Ì³ªÀÏÁ¤

°³ÀÎÁ¤º¸ ¶Ç´Â ÀúÀ۱ǿ¡ °ü·ÃµÈ °Ô½Ã¹°Àº ¿¹°í¾øÀÌ »èÁ¦µÉ ¼ö ÀÖ½À´Ï´Ù.
ŸÀÎÀÇ °³ÀÎÁ¤º¸¸¦ µµ¿ë/À¯Ãâ/³ëÃâÇϰųª ÀúÀÛ±Ç(µ¿¿µ»ó, »çÁø, À½¿ø, ±â»ç)ÀÌ Æ÷ÇÔµÈ ÀڷḦ ¹«´ÜÀ¸·Î °Ô½ÃÇÒ °æ¿ì
ÀÛ¼ºÀÚ°¡ °³ÀÎÁ¤º¸º¸È£¹ý ¶Ç´Â ÁöÀûÀç»ê±Ç Ä§ÇØ·Î ó¹ú¹ÞÀ» ¼ö ÀÖÀ¸´Ï ÁÖÀÇÇϽñ⠹ٶø´Ï´Ù.

ÇѾç´ëÇб³ ¼öÇаú - [¼¼¹Ì³ª]Bounding the chromatic number of t-perfect graphs
[¼¼¹Ì³ª]Bounding the chromatic number of t-perfect graphs

Á¦¸ñ: Bounding the chromatic number of t-perfect graphs

ÀϽÃ: 2024³â 9¿ù 25ÀÏ(¼ö) ¿ÀÈÄ 4:30

Àå¼Ò: ÀÚ¿¬°úÇаü 202È£

¿¬»ç: ¾ö»óÀÏ ±³¼ö (IBS Discrete Mathematics group)

ÃÊ·Ï:
Perfect graphs can be described as the graphs whose stable set polytope is defined by their non-negativity and clique inequalities (including edge inequalities). In 1975, Chvátal defined an analogous class called t-perfect graphs, which are the graphs whose stable set polytope is defined by their non-negativity, edge and odd circuit inequalities. We show that t-perfect graphs are 149295-colourable. This is the first finite bound on the chromatic number of t-perfect graphs, and answers a question of Shephard from 1995. 

This is joint work with Maria Chudnovsky, Linda Cook, James Davies, and Jane Tan.

 
Á¦¸ñ ÀÛ¼ºÀÏ Á¶È¸
icon  [ÄÝ·ÎÄû¾ö] 2025³â 1Çб⠼öÇа­¿¬È¸ 2025.03.06 285 
[¼¼¹Ì³ª] Existence and Large-time behavior of the solutions for the nonlinear Vlasov-Poisson-Fokker-Planck Equation 2025.04.04 62 
[¼¼¹Ì³ª]Adaptive Cucker-Smale Model and its Asymptotic Behavior in the Singular Limit 2025.04.04 41 
icon  [¼¼¹Ì³ª] Çкλý/´ëÇпø»ýÀ» À§ÇÑ AIÀÇ ½Å·Ú¼º ¹× ¾ÈÁ¤¼º 2025 º½ ÃÊû ¼¼¹Ì³ª 2025.03.31 59 
[¼¼¹Ì³ª]Partial regularity in nonlocal systems 2025.03.31 53 
[¼¼¹Ì³ª]Survey on frequency domain methods for random fields 2025.03.26 45 
[¼¼¹Ì³ª]Introduction to Causal and Counterfactual Learning 2025.03.07 50 
[¼¼¹Ì³ª]Twin-width from perspective of permutations 2025.01.14 63 
[¼¼¹Ì³ª]A coarse Erdös-Pósa theorem for long cycles 2024.11.26 55 
[¼¼¹Ì³ª]Odd coloring and strong odd coloring on planar graphs 2024.11.26 39 
 
  
(1/6)    icon    1 [2] [3] [4] [5] [6]