ÇѾç´ëÇб³ ¼öÇаú

  • HOME
  • Ä¿¹Â´ÏƼ
  • ¼¼¹Ì³ªÀÏÁ¤
¼¼¹Ì³ªÀÏÁ¤

°³ÀÎÁ¤º¸ ¶Ç´Â ÀúÀ۱ǿ¡ °ü·ÃµÈ °Ô½Ã¹°Àº ¿¹°í¾øÀÌ »èÁ¦µÉ ¼ö ÀÖ½À´Ï´Ù.
ŸÀÎÀÇ °³ÀÎÁ¤º¸¸¦ µµ¿ë/À¯Ãâ/³ëÃâÇϰųª ÀúÀÛ±Ç(µ¿¿µ»ó, »çÁø, À½¿ø, ±â»ç)ÀÌ Æ÷ÇÔµÈ ÀڷḦ ¹«´ÜÀ¸·Î °Ô½ÃÇÒ °æ¿ì
ÀÛ¼ºÀÚ°¡ °³ÀÎÁ¤º¸º¸È£¹ý ¶Ç´Â ÁöÀûÀç»ê±Ç ħÇطΠó¹ú¹ÞÀ» ¼ö ÀÖÀ¸´Ï ÁÖÀÇÇϽñ⠹ٶø´Ï´Ù.

ÇѾç´ëÇб³ ¼öÇаú - [¼¼¹Ì³ª]Bounding the chromatic number of t-perfect graphs
[¼¼¹Ì³ª]Bounding the chromatic number of t-perfect graphs

Á¦¸ñ: Bounding the chromatic number of t-perfect graphs

ÀϽÃ: 2024³â 9¿ù 25ÀÏ(¼ö) ¿ÀÈÄ 4:30

Àå¼Ò: ÀÚ¿¬°úÇаü 202È£

¿¬»ç: ¾ö»óÀÏ ±³¼ö (IBS Discrete Mathematics group)

ÃÊ·Ï:
Perfect graphs can be described as the graphs whose stable set polytope is defined by their non-negativity and clique inequalities (including edge inequalities). In 1975, Chvátal defined an analogous class called t-perfect graphs, which are the graphs whose stable set polytope is defined by their non-negativity, edge and odd circuit inequalities. We show that t-perfect graphs are 149295-colourable. This is the first finite bound on the chromatic number of t-perfect graphs, and answers a question of Shephard from 1995. 

This is joint work with Maria Chudnovsky, Linda Cook, James Davies, and Jane Tan.

 
Á¦¸ñ ÀÛ¼ºÀÏ Á¶È¸
icon  [ÄÝ·ÎÄû¾ö]2024³â 2Çб⠼öÇа­¿¬È¸ 2024.09.02 175 
[¼¼¹Ì³ª]Global existence of smectic liquid crystal flows in dimension two 2024.09.22 35 
[¼¼¹Ì³ª]Diffusion-Reaction Epidemic Model with Free Boundary 2024.09.22 36 
icon [¼¼¹Ì³ª]Bounding the chromatic number of t-perfect graphs 2024.09.22 53 
[½ÉÆ÷Áö¾ö]HYU MATH ȨĿ¹Öµ¥ÀÌ 2024.08.28 200 
[¼¼¹Ì³ª]Flexible multivariate spatio-temporal Hawkes process models of terrorism 2024.08.20 65 
[¿öÅ©¼¥]HYKE meeting 2024 2024.08.01 93 
[¿öÅ©¼¥]Summer School on Elliptic & Parabolic PDEs and Related Topics 2024.07.30 61 
[¿öÅ©¼¥]Workshop for Young Researchers in Fluid Dynamics 2024.07.11 59 
[¼¼¹Ì³ª]Synchronization estimate of the discrete Kuramoto model with multiplicative random noise 2024.07.08 54 
 
  
(1/5)    icon    1 [2] [3] [4] [5]